6 min to read
R-Studio SVM(Support Vector Machine) 을 이용한 머신러닝
kernlab 패키지의 ksvm 사용하기
파일 소스
우클릭 -> 다른이름으로 링크저장 이용해 주세요
S20191114.zip
메인 사용 함수
install.packeage(“kernlab”) library(kernlab) ksvm 서포트 벡터 머신 알고리즘을 수행하려면 kernlab 패키지의 ksvm() 함수를 사용
소스 코드
library(kernlab)
data <- read.csv('bmi.csv')
head(data)
str(data)
summary(data)
dim(data)
colnames(data)
idx <- sample(1:nrow(data), 0.9 * nrow(data))
training <- data[idx, ]
testing <- data[-idx, ]
# kernel 커널 함수를 명시한다.
model <- ksvm(label ~ ., data = training, kernel = 'vanilladot')
pred <- predict(model, testing)
table(pred, testing$label)
aggrement <- pred == testing$label
prop.table(table(aggrement))
model_rbf <- ksvm(label ~ ., data = training, kernel = 'rbfdot')
pred_rbf <- predict(model_rbf, testing)
table(pred_rbf, testing$label)
aggrement_rbf <- pred_rbf == testing$label
prop.table(table(aggrement_rbf))
########################################################
library(kernlab)
str(iris)
unique(iris$Species)
idx <- sample(1:nrow(iris), 0.6 * nrow(iris))
training <- iris[idx, ]
testing <- iris[-idx, ]
model <- ksvm(Species ~ ., data = training, kernel = 'vanilladot')
pred <- predict(model, testing)
prop.table(table(pred == testing$Species))
#######################################################
library(kernlab)
data <- read.csv('zoo_data.csv')
testing <- read.csv('zoo_testing.csv')
head(data)
str(data)
summary(data)
dim(data)
colnames(data)
model <- ksvm(type ~ ., data = data, kernel = 'rbfdot')
pred <- round(predict(model, testing), 0)
table(pred, testing$type)
aggrement <- pred == testing$type
prop.table(table(aggrement))
#########################################################
library(kernlab)
data <- read.csv('letterdata.csv')
head(data)
str(data)
summary(data)
dim(data)
colnames(data)
idx <- sample(1:nrow(data), 0.7 * nrow(data))
training <- data[idx, ]
testing <- data[-idx, ]
model <- ksvm(letter ~ ., data = training, kernel = 'rbfdot')
pred <- predict(model, testing)
table(pred, testing$letter)
prop.table(table(pred == testing$letter))
##############################################################
library(kernlab)
data <- read.csv('mushrooms.csv')
head(data)
str(data)
summary(data)
dim(data)
colnames(data)
data <- data[, -17]
idx <- sample(1:nrow(data), 0.7 * nrow(data))
training <- data[idx, ]
testing <- data[-idx, ]
model <- ksvm(type ~ ., data = training, kernel = 'rbfdot')
pred <- predict(model, testing)
table(pred, testing$type)
prop.table(table(pred == testing$type))
##################################################################
library(kernlab)
data <- read.csv('../../R Basic Source/31.KNN/likelyhood.csv')
head(data)
str(data)
summary(data)
dim(data)
colnames(data)
idx <- sample(1:nrow(data), 0.1 * nrow(data))
training <- data[idx, ]
testing <- data[-idx, ]
model <- ksvm(likelyhood ~ ., data = training, kernel = 'rbfdot')
pred <- predict(model, testing)
table(pred, testing$likelyhood)
prop.table(table(pred == testing$likelyhood))
Comments